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Abstract—In this paper we analyze the stability of a
saturated PID controller for robot manipulators. Even though
this controller has been previously reported in the literature,
we now give less restrictive conditions for the control gains in
order to ensure local exponential stability of the equilibrium
point. The new tuning conditions guarantee that the applied
torque signals evolve into prescribed limits, and also the
internal velocity commands are not greater than the velocity
limits for each actuator. At the end, we show experimental
results of the implementation of this controller in a PA10-7CE
robot.
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I. INTRODUCTION

The PID controller is the basic scheme for the position
regulation and tracking of industrial robot manipulators.
A historical review about this theme can be found in
(Santibafiez et al., 2010) and (Orrante-Sakanassi et al.,
2010). In practice, industrial robots are equipped with a
position control computer which produces the desired joint
commands for the actuator servo-drivers; these commands
are bounded in a similar way than the actuator inputs.
In such a sense, very recently Santibanez et al., (2010)
proposed a new saturated nonlinear PID regulator for robot
manipulators that considers the saturation phenomena of the
control computer, the velocity servo—drivers, and also the
torque limitations of the actuators.

The contribution in this paper is twofold. First, we
recall a variant of the work published in (Santibafiez et
al., 2010), where the controller, proposed and analyzed by
Orrante-Sakanassi & Santibafiez, (2009), is composed by a
saturated proportional (P) inner velocity loop, provided by
the servo—driver, and a saturated proportional—integral (PI)
outer position loop, supplied by the control computer (see
Fig. 1); such structure naturally matches the one in practical
industrial robots. But now, we present less restrictive condi-
tions for the control gains than those presented in (Orrante-
Sakanassi & Santibafiez, 2009). Secondly, based on the
previous proposed conditions, we show an experimental
evaluation of such a nonlinear PID regulator on a PA10-
7CE robot arm.

Throughout this paper, we use the notation Ayin {A(x)}
and Amax{A(z)} to indicate the smallest and largest
eigenvalues, respectively, of a symmetric positive defi-
nite bounded matrix A(x), for any * € R". Also, we
define Apin{A} as the greatest lower bound (infimum)
of Amin{A(x)}, for all x € R", that is, \nin{A4} =
inf, R~ Amin{A(x)}. Similarly, we define \pnax{A} as
the least upper bound (supremum) of Apax{A(x)}, for all
x € R", that is, Apax{A} = suppcR” Amax{A(x)}. The
norm of vector x is defined as ||z| = VT« and that of
matrix A(x) is defined as the corresponding induced norm

[A@)]| = v Amax {A(x)T A()}.

II. PRELIMINARIES

A. Robot dynamics

The dynamics of a serial n—link rigid robot, without the
effect of friction, can be written as (Spong & Vidyasagar,
1989):

M(g)qg+Clg,9)q+9(q) =7 (1)

where g € R™ is the vector of joint positions, § € R" is the
vector of joint velocities, 7 € R"™ is the vector of applied
torques, M (g) € R™ ™ is the symmetric positive definite
manipulator inertia matrix, C'(g,q) € R™*" is the matrix
of centripetal and Coriolis torques, and g(g) € R" is the
vector of gravitational torques, obtained as the gradient of
the robot potential energy U(q), i.e.

ou(q)

g(q) = g )

We assume that all the joints of the robot are of revolute
type.

B. Properties of the robot dynamics

We recall an important property of the dynamics (1)
which is useful in our paper:
Property 1. The gravitational torque vector g(q) is bounded
for all ¢ € R". This means that there exist finite constants
~; > 0 such that (Craig, 1998):

sup [gi(q)] < i , 3)

gcR



.2:"
- T -
< >
3 3

COMPUTER

Congreso Anual 2010 de la Asociaciéon de México de Control Automatico. Puerto Vallarta, Jalisco, México.

=

DRIVER

Fig. 1.

where g¢;(q) stands for the i-th element of g(g). Equiva-
lently, there exists a constant &’ such that

lg(g)ll < k' forall g€ R",

Furthermore there exists a positive constant kg, such that

5
oq

<k,

for all ¢ € R", and
lg(x) =gl < kqllz —yl,

for all ¢,y € R".
Moreover, a simple way to compute kg is:

)

k, > n | max
7= ( 9q;

4,5,4

A less restrictive constant kg, can be computed by:

Jgi(q) D
ko > m — 5
g = " ( j%IX’ 8(]j ( )

where 1 =1,2,...nand 7 =1,2,...n. o

C. Mean-Value Theorem.

Here, we recall the Mean—Value Theorem, which is a key
in finding the less conservative constants kg, related with
the gravitational torque vector.

Theorem 1: (Kelly et al., 2005) Consider the continuous
function f : R™ — R. If moreover f(z1,22,...,2,) has
continuous partial derivatives then, for any two constant
vectors ¢,y € R", we have

of
0z1 o
f

~
=

N
=

[ — y] (6)

Ozn Z:€ i

where £ € R" is a vector suitably chosen on the line
segment which joins vectors  and y. o

Scheme of the practical nonlinear PID controller with bounded torques for robot manipulators.

D. Problem formulation

The control scheme presented in this paper involves spe-
cial saturation functions that fit in the following definition.

Definition 1: (Zavala & Santibaiiez, 2006) Given some
positive constants [ and m, with [ < m, a function
Sat(xz;l,m) : R — R : z — Sat(x;l,m) is said to be
a strictly increasing linear saturation function for (I, m) if
it is locally Lipschitz, strictly increasing, C? differentiable
and satisfies:

1) Sat(z;l,m) =« when |z| <1

2) |Sat(z;l,m)| <m for all z € R.

o
For instance, the following saturation function:
—l+(m—l)tanh(ffl—tll) ife < —I
Sat(xz;l,m)=< = if |z <l (7
l—i—(m—l)tanh(ffl;fl) ifz>1

is a special case of the linear saturations given in Definition
2; n saturation functions can be joined together in an n X 1
saturation function vector denoted by Sat(z;l, m), i.e.,

Sat(xl; ll, ml)

Sat(xg; lQ, mg)
Sat(xz;l,m) =

Sat(zn; ln, my)

where x,l, m € R", that is,
1 I .
o 12 mo

Tn ln My

Consider the robot dynamics (1), and assume that each
joint actuator is able to supply a known maximum torque
7% and a maximum velocity v;"®*, so that:

max

ml < o

’ |’Udi|§vi izla"'vn (8)

where 7; and vg, stand for the i-th entry of vectors 7 and
v4, respectively; notice in Fig. 1 that these signals are the
outputs of the driver and the control computer.
Assumption 1. The maximum torque 7,°** of each actuator
satisfies the following condition:

T > €))



where ~; was defined in Property 1, fori =1,2,....n. ¢

This assumption means that the robot actuators are able
to supply torques in order to hold the robot at rest for all
desired joint position ¢, € R".

The control problem is to compute the joint torque signals
7 € R", satisfying constraints (8), such that the robot joint
positions g tend asymptotically toward the constant desired
joint positions ¢ .

III. CONTROLLER ANALYSIS

In this section we present an alternative stability analysis
for the nonlinear PID controller originally proposed in
(Orrante-Sakanassi & Santibanez, 2009). The controller has
the form:

T = Sathpvlsat(Kppq+W*§l;i7m;i)—QlElpvmpl
(10)
t
w" = K[ q dr (11)

0

where K,,, K,, and K;, are diagonal positive definite
matrices. This control law is formed by two loops (an
outer joint position proportional-integral PI loop and an
inner joint velocity proportional P loop), and considers the
saturation effects existing in the outputs of the control stages
(see Fig. 1); Sat[ K, [Sat(Kppq +w; Lpi, my;) — §); 1y, my)
is a vector where each element is a saturation function as
in Definition 1 for some (I,, m,), where I, and m, are
vectors whose elements are [,,, and m,,, respectively, with

i =1,2,...,n. The control law (10)-(11) can be rewritten
as:
T = Sat[Sat(K,q + w;ly, my;) — Kuq; 1, mp|(12)
w = K, / (13)
where K, = K, Kpp, Ki = KpKip, Ky = Kpe,

Iy = val;, my; =
assumpt10n
Assumption 2. The saturation limits of the PI and P loops
satisfy:

puTy;, and fulﬁlls the following

2

Vi <lpi; <My, and 7y < lp, < my, < T (14)
Moreover, the diagonal matrix K, satisfies

Amin {Kp} > ky. (15)

o

Remark: The saturation constraints of the electronic de-
vices and the actuators are, in fact, hard saturations. How-
ever, with the end of carrying out the stability analysis,
they can be approximated by linear saturation functions, like
those defined in Definition 2, with [ < m and [ arbitrarily
close to m.

In order to simplify the notation, henceforth we will omit,
in the argument, the limits of the saturation functions.
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A. Closed-loop system

By substituting (12)-(13) into the robot dynamics (1), we
obtain

q —q
i q — M(q)illsatlsat.(ll(?q + w) - qul (16)
dt —C(g:9)4 — 9(q)]

w Kiq

which is an autonomous differential equation with a
unique equilibrium point given by [§7 ¢7 wT]T =
[07 07 g(g,)")"€R>", where we have used Assumption
2 to get that Sat(Sat(w)) — g(g,) =0 < w =g(q,). In
order to move the equilibrium point of (16) to the origin,
we apply the following change of variables x = w—g(q,).

The closed-loop system (16) can be studied as a singu-
larly perturbed system. To this end, (16) can be rewritten
as two first-order differential equations (Orrante-Sakanassi
& Santibaiiez, 2009):

] q —q
dt | 4 M(q ) '[Sat[Sat(K,q + = + g(q,))
+4] — C(q,9)q — 9(q)]
(17
d *
wT = K hy(x) (18)

where (17) and (18) are the so-called boundary layer system
and reduced system respectively. In the latter K = %Kl
and ' = &t is a new time scale; as ¢ > 0 is a small
parameter then ¢’ is slower than ¢ and x in (17) can be
seen as a fixed parameter. Also, hq(x) is the value of ¢
which corresponds to the equilibrium of the boundary layer
system (17).

Proposition 1: (Orrante-Sakanassi & Santibafiez, 2009)
Consider the robot dynamics (1) in closed-loop with
the practical saturated PID control law (10)-(11).
Under Assumption 2, the equilibrium point of (16) is
locally exponentially stable. Besides |7;(¢)] < 7/ and
|vg, (t)] <vPe* forall i =1,2,...,nand ¢t > 0. o

Proof. See (Orrante-Sakanassi & Santibaiiez, 2009).

Remark: Note, from Proposition 1, that (15) is a sufficient
condition for local exponential stability of the equilibrium
point in (16). In the remainder of this section we show how
(15) can be replaced by the less restrictive condition

kp, > kg, (19)

obtaining the same results as in Proposition 1.

1) Unique equilibrium of the boundary—layer system:
The boundary-layer system (17) corresponds to the robotic
system under a Saturated PD Controller with Desired Grav-
ity plus a constant vector x, and it has equilibrium points



which are the solutions of the nonlinear equations:
g =0
Sat[Sat[K,q + = +g(q4)]] —9(¢9) = O.

(20)
3y
Such equations have a unique solution, provided that As-

sumption 2 and (19) are satisfied. First, from Assumption
2, we have that (21) can be rewritten as:

Kpg+x+9(qs) —9(g) = 0. (22)
The proof that (22) has a unique solution
q = hi(x) = K, [g(gs — h1(x)) —g(ga) — =] (23)

provided that k,, > kg,; is given in Appendix.

2) Positive cfeﬁniteness of the Lyapunov function candi-
date for the boundary-layer system: Consider the Lyapunov
function candidate

W@ = "M@

n d;
+> / Sat[Sat(Kp,r: + x; + gi(q4))|dr:
i=170

+U(qy — q)
n h1, (T)

-3 / Sat[Sat(K,,r: + @ + gi(q,))ldr:
i=170

—U(gy — ha(z))

which is proven to be a positive definite and radially
unbounded function provided that (15) is satisfied (Zavala &
Santibaniez, 2007; Orrante-Sakanassi & Santibafiez, 2009).
Moreover, following the procedure in (Hernandez-Guzman
et al., 2008), it is possible to prove that (24) is a positive
definite and radially unbounded function if

n Ba;
b > |
j=1
Note that (19) implies (25).

3) Negative definiteness of the time derivative of the
Lyapunov function for the reduced system: In order to
analyze the stability of the reduced system (18) we use the
following Lyapunov function

(24)

(25)

V(x) = %mT(K;)*lm (26)
whose time derivative is
V(a:) = zTh, ()
= —hi(@)" [-Kphi (@) — 9(q,) + 9(q, — h1(2))]
27

where we have used (23). The negative definiteness of (27),
provided that (15) is fulfilled, has been proven in (Orrante-
Sakanassi & Santibafiez, 2009). The same can be proven if
(25) is satisfied (Hernandez-Guzman et al., 2008). We are
now ready formulate the following:

Proposition 2: Consider the robot dynamics (1) in
closed-loop with the practical saturated PID control law
(10). Under (14) and (19), the equilibrium point of (16)
is locally exponentially stable. Besides |7;(t)| < 7/*** and
|vg; (t)] <vPe* forall i =1,2,...,nand ¢t > 0.

o
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IV. EXPERIMENTAL RESULTS

This section shows the results of a real-time experimental
essay on the PA10-7CE robot system. The PA10-7CE robot
is a 7-dof redundant manipulator with revolute joints. The
numerical values of the parameters for the PA10-7CE are
shown in Table I. Table II shows the values of the gains and
the saturation limits for each joint of the proposed control
scheme (10). It is easy to check that the conditions (14)
and (19) are fulfilled. Fig. 2 shows the evolution of the
position error for each joint. It can be seen that transient
responses are relatively fast (lower than 1 second for joints
4 to 7 and lower than 2 seconds for joints 1 to 3) without
overshoot. The steady state error for each joint is lower
than 0.4 degrees. Fig. 3 shows the applied torque for each
joint. The torques evolve within the prescribed limits. For
the joints 4 to 7 the torques sometimes reach the permitted
torque limits, thus confirming the stability theoretical result.
Fig. 4 shows the velocity references for each joint. The
velocity references also evolve within the prescribed limits.
For all joints, the velocity references reach, in the first
seconds, the velocity limits of the actuators.

TABLE I
NUMERICAL VALUES OF THE PARAMETERS FOR THE PA10-7CE

| Parameter || Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 | Joint 7 | Units

kg, 0 909.58 216.39 432.25 0.8240 1.3734 0 [N m/rad]
Vi 0 129.94 30.91 61.75 0.11772 0.1962 0 [N m]

Fmax 232 232 100 100 14.5 14.5 14.5 [N m]

pmax 1 1 2 2 27 27 27 [rad/s]
kg 909.58 [N m/rad]
P 147.1513 [N m]

V. CONCLUSIONS

In this paper we show that choosing some control param-
eters with conditions less restrictive than those presented
in (Orrante-Sakanassi & Santibaiiez, 2009) also guarantee
local exponential stability of the equilibrium point of (16).
It is also guaranteed that, regardless of the initial conditions,
the delivered actuator torques and velocities evolve inside
the permitted limits. We also have presented results from
the real-time practical implementation of this controller on
the PA10-7CE robot, by considering the natural saturations
of the electronics in the control computer, servo drivers, and
actuators.
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VII. APPENDIX

In this section we prove that (22) has a unique solution
g = hy(x) € R", provided that:
99:(q) D
8(]j

To this end, notice that we can rewrite (22) as

kp, > kg, >n (ma_x
q.j

q g1(@)—g1(4,)—z1
~ kp
2 92(@)—92(q,) >

kp2

=f@9,- (28

ST
Il
Il

K (@) =90 () —n
Gn In @)= 9nGy)—2n anqd

If f(q,q,) satisfies the Contraction Mapping Theorem
(Kelly et al., 2005; Khalil, 2002), then (28) has a unique
solution ¢*. Having this in mind, we have

91(4,~V)—91(¢,~W)

kp1
92(4,—V)—92(4 ,—W)
kp2

Hf(vaqd)_f(waqd)H = (29)
9n (@~ V)~ gn(q,~W)
kpn

where &, is a vector on the line segment that joins vectors
w and v, and, by substituting in (29), we obtain

[f(v.q0) — fF(w,q0)| = [[Afw —]]| < [[A][lw —v|
where A is the matrix
[ ﬁ ag](z ‘z o k;lq a%]z(; ‘z . ﬁ 59](2 ‘z . ]
1 592(2 l 1 592(2 l 1 592(2 l
Fr2 z=E B2 z=62 B2 z=62
1 ﬂgn'§z2| 1 ﬂgn'§z2| 1 gn§z2|
kpn ~ 021 |y_¢. [ E I kpn z=¢n

If |A|| < 1, then f(q,q,) fulfills the Contraction Map-
ping Theorem.

Considering (19), it is possible to prove that each element
in ATA fulfills [ATA(4, j)| < 1. Now, knowing that the
eigenvalues from any matrix B, where b;; denotes its ij-th
element, fulfill (Horn & Johnson, 1985):

|)\k|§n[ma_x{|bij|}] vV k=1,...,n
i

we obtain that

MAT A < Ao AT A} < [ma(|AT 4G, D)} | <

3
=1
n

and consequently we have that ||A|| < 1. Therefore, we
get [|£(v,4,) — f(w,q,)ll < | A]w — o] where ||A] is
strictly smaller than the unity. Hence, we have that (22) has
a unique solution ¢ = hq(x) € R" provided that (19) is
satisfied.



